179 research outputs found

    Fast Data in the Era of Big Data: Twitter's Real-Time Related Query Suggestion Architecture

    Full text link
    We present the architecture behind Twitter's real-time related query suggestion and spelling correction service. Although these tasks have received much attention in the web search literature, the Twitter context introduces a real-time "twist": after significant breaking news events, we aim to provide relevant results within minutes. This paper provides a case study illustrating the challenges of real-time data processing in the era of "big data". We tell the story of how our system was built twice: our first implementation was built on a typical Hadoop-based analytics stack, but was later replaced because it did not meet the latency requirements necessary to generate meaningful real-time results. The second implementation, which is the system deployed in production, is a custom in-memory processing engine specifically designed for the task. This experience taught us that the current typical usage of Hadoop as a "big data" platform, while great for experimentation, is not well suited to low-latency processing, and points the way to future work on data analytics platforms that can handle "big" as well as "fast" data

    Review of Erosion and Sedimentation Control Programs in the Piscataqua Region

    Get PDF
    The Piscataqua Region Estuaries Partnership (PREP) seeks to minimize adverse impacts to water resources associated with construction site development activities. In order to achieve this goal, PREP must understand the strengths and weaknesses of existing erosion and sedimentation control (E&SC) programs in the 52 municipalities of the PREP water shed (Figure 1-1). A detailed understanding of the existing E&SC programs will enable PREP and other stakeholders to identify and implement actions to improve E&SC programs and minimize adverse impacts. This report provides a review and assessment of existing erosion and sedimentation control programs and a set of recommendations for improving these programs. Our approach in conducting the review was to obtain available federal, state and municipal programs data and to interview people who work with E&SC programs on a daily basis, including state, municipal, construction contractor and site inspector staff. A statement of the problem, an introduction to applicable regulations, and a description of our project approach are provided below

    Search Agent Model: a Conceptual Framework for Search by Algorithms and Agent Systems

    Get PDF
    No abstract available

    Search Agent Model: a Conceptual Framework for Search by Algorithms and Agent Systems

    Get PDF
    No abstract available

    Local and global query expansion for hierarchical complex topics

    Get PDF
    In this work we study local and global methods for query expansion for multifaceted complex topics. We study word-based and entity-based expansion methods and extend these approaches to complex topics using fine-grained expansion on different elements of the hierarchical query structure. For a source of hierarchical complex topics we use the TREC Complex Answer Retrieval (CAR) benchmark data collection. We find that leveraging the hierarchical topic structure is needed for both local and global expansion methods to be effective. Further, the results demonstrate that entity-based expansion methods show significant gains over word-based models alone, with local feedback providing the largest improvement. The results on the CAR paragraph retrieval task demonstrate that expansion models that incorporate both the hierarchical query structure and entity-based expansion result in a greater than 20% improvement over word-based expansion approaches

    ConvAI3: Generating Clarifying Questions for Open-Domain Dialogue Systems (ClariQ)

    Get PDF
    This document presents a detailed description of the challenge on clarifying questions for dialogue systems (ClariQ). The challenge is organized as part of the Conversational AI challenge series (ConvAI3) at Search Oriented Conversational AI (SCAI) EMNLP workshop in 2020. The main aim of the conversational systems is to return an appropriate answer in response to the user requests. However, some user requests might be ambiguous. In IR settings such a situation is handled mainly thought the diversification of the search result page. It is however much more challenging in dialogue settings with limited bandwidth. Therefore, in this challenge, we provide a common evaluation framework to evaluate mixed-initiative conversations. Participants are asked to rank clarifying questions in an information-seeking conversations. The challenge is organized in two stages where in Stage 1 we evaluate the submissions in an offline setting and single-turn conversations. Top participants of Stage 1 get the chance to have their model tested by human annotators

    Consensus of state of the art mortality prediction models: From all-cause mortality to sudden death prediction

    Full text link
    Worldwide, many millions of people die suddenly and unexpectedly each year, either with or without a prior history of cardiovascular disease. Such events are sparse (once in a lifetime), many victims will not have had prior investigations for cardiac disease and many different definitions of sudden death exist. Accordingly, sudden death is hard to predict. This analysis used NHS Electronic Health Records (EHRs) for people aged ≥\geq50 years living in the Greater Glasgow and Clyde (GG\&C) region in 2010 (n = 380,000) to try to overcome these challenges. We investigated whether medical history, blood tests, prescription of medicines, and hospitalisations might, in combination, predict a heightened risk of sudden death. We compared the performance of models trained to predict either sudden death or all-cause mortality. We built six models for each outcome of interest: three taken from state-of-the-art research (BEHRT, Deepr and Deep Patient), and three of our own creation. We trained these using two different data representations: a language-based representation, and a sparse temporal matrix. We used global interpretability to understand the most important features of each model, and compare how much agreement there was amongst models using Rank Biased Overlap. It is challenging to account for correlated variables without increasing the complexity of the interpretability technique. We overcame this by clustering features into groups and comparing the most important groups for each model. We found the agreement between models to be much higher when accounting for correlated variables. Our analysis emphasises the challenge of predicting sudden death and emphasises the need for better understanding and interpretation of machine learning models applied to healthcare applications
    • …
    corecore